

Curriculum Map: Year 10 Subject: Combined Trilogy Science (chemistry) Exam Board: AQA

Topic	Key Knowledge	Key Skills	Assessment Opportunities
	What will all students KNOW by the end of the topic?	What key skills will be learnt/developed by the end of	What are the key pieces of
		the topic? What will all students be able to DO by the	assessment? How will students be
		end of the topic?	assessed?
Chemical changes	-How metals react with oxygen, water and acids	-Mixing reagents to explore chemical changes and products	Homework
(including recap	- The order of metals, including carbon and hydrogen, in the	-Applying the reactivity of metals including carbon and	Starter tasks
of bonding)	reactivity series	hydrogen to displacement reactions	Regular PPQ practice
	- What oxidation and reduction are in terms of electrons,	-Elucidating chemical formulae	Assessment 1
	oxygen and hydrogen	-Writing and balancing general and ionic equations Writing	Assessment 2
	- How metals are extracted from their ores using carbon	and balancing ionic half equations	
	reduction	-Identifying species that have been oxidised or reduced	
	- The pH scale and the use of a variety of indicators	-Predicting products from given reactants	
	- The link between pH, [H ⁺] and orders of magnitude - Neutralisation of acids and salt production	-Competence of carrying out a multistep procedure, preparation of a pure, dry sample of a soluble salt	
	- The general equation for neutralisation	-Using the pH scale to identify acidic or alkaline solutions	
	- The difference between strong and weak acids	-Measuring the pH of different acids and bases at different	
	- How covalent compounds form	concentrations	
	- Properties of covalent compounds	-Making orders of magnitude calculations	
	- Properties of metals and alloys and metallic bonding	-Using the words, weak, strong, dilute and concentrated	
	- How ionic compounds form	and neutral when applied to acids and their reactions	
	- Properties of ionic compounds	-Drawing and interpreting dot-cross diagrams for covalent	
	- The process of electrolysis including all key terms	compounds	
	- How the electrolysis of molten ionic compounds yields	-Explaining how different substances conduct electricity	
	products	-Explaining the properties of alloys	
	- How electrolysis can be used to extract more reactive	-Determining numbers of sub-atomic particles Drawing dot-	
	metals	cross diagrams	
	- How the electrolysis of aqueous solutions yields products	-Calculating charges on ions	
		-Determining formulae of ionic compounds	
		-Setting up a simple electrochemical cell	
		-Applying redox to write and balance half equations	
		-Evaluating the processes involved in extracting metals from	
		the ground and then by electrolysis	

Curriculum Map: Year 10 Subject: Combined Trilogy Science (chemistry) Exam Board: AQA

Completion of chemical analysis (following on from Year 9)	-The difference between pure substances and mixtures and formulations -Physical separation processes including: Filtration, crystallisation, simple and fractional distillation and chromatography -The gases: • Hydrogen • Oxygen • Carbon dioxide and • Chlorine can be identified by simple laboratory tests and the positive test results for these gases -Recap: a simple model of the atom	-Fluency in the use of IUPAC nomenclature regarding representations of apparatus -Construction and use of word and symbol equationsBe able to explain how chromatography separates mixturesInterpretation of chromatograms -Describing how to carry out tests for gases -Application of key mathematical skills: Calculating Rf values or distances moved by a solvent or a substance during chromatographyPractical skills and development and apparatus use: Setting up running paper chromatography (Req Prac 6).	Chromatography required practical Homework Starter tasks Regular PPQ practice Assessment 2 Homework
and periodic table review	-The development of the periodic table -The structure of the modern periodic table -The chemistry of the elements of: • Group 1 • Group 7 • Group 0	element symbols and electronic structures. -Construction and use of word and symbol equations. -Explaining how new evidence can lead to changes in accepted models. -Application of key mathematical skills: Processing data to reveal patterns within elemental properties and interpreting data and graphs of elemental data.	Starter tasks Regular PPQ practice Mock
Energy changes	 Energy is conserved during chemical reactions What exothermic and endothermic reactions are including everyday examples of them How reaction profiles are used to represent chemical reactions What activation energy is Energy is needed to break chemical bonds Energy is released when new bonds are formed 	-Writing, balancing and interpreting chemical equations -Measuring temperature changes of simple chemical reactions and classifying them as exo or endothermic -Investigating the variables that affect temperature changes -Drawing and interpreting reaction profiles for exothermic and endothermic reactions -Calculating the overall energy change in reactions from supplied data	Homework Starter tasks Regular PPQ practice
Quantitative Chemistry	- Consolidation of writing and balancing equations - Be familiar with specific key terms e.g. relative atomic mass/formula mass, mole, limiting reactant - The conservation of mass law - Avogadro's number - Amounts of substance can be measured in moles - How conservation of mass can be understood using	-Investigating mass changes using various apparatus -Writing, balancing and interpreting chemical equations - Using formula mass to calculate moles and vice versa -Recognising and using expressions in standard form Using ratios, fractions and percentages -Changing the subject of a variety of equations	Homework Starter tasks Regular PPQ practice

Curriculum Map: Year 10 Subject: Combined Trilogy Science (chemistry) Exam Board: AQA

formula masses	s and moles in balanced equations	-Converting units	
- How to calcula	ate % of an element in a compound	-Using appropriate numbers of significant figures	
- How to calcula	ate reacting masses in balanced equations	-Writing, balancing and interpreting chemical equations	
-What limiting i	reactants are and their effect on reacting	-Using formula mass to calculate moles and vice versa	
mass calculatio	ns	-Recognising and using expressions in standard form Using	
- How concentr	ration of solutions is measured in chemistry -	ratios, fractions and percentages	
Be familiar with	n specific key terms e.g. relative atomic	-Changing the subject of a variety of equations Converting	
mass/formula r	mass, mole, limiting reactant, yield,	units	
concentration		-Using appropriate numbers of significant figures	
-The uncertaint	ry associated with any measurements taken	-Identifying anomalous results and making estimations of	
		uncertainty	
		-Calculating the mean of a data set and using the range as a	
		measure of uncertainty	